A Brief History of PostgreSQL and Postgres-XC

Note: The following description applies both to Postgres-XC and PostgreSQL if not described explicitly.

The object-relational database management system now known as PostgreSQL is derived from the POSTGRES package written at the University of California at Berkeley. With over two decades of development behind it, PostgreSQL is now the most advanced open-source database available anywhere.

The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the system were presented in The design of POSTGRES , and the definition of the initial data model appeared in The POSTGRES data model . The design of the rule system at that time was described in The design of the POSTGRES rules system. The rationale and architecture of the storage manager were detailed in The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first "demoware" system became operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in The implementation of POSTGRES , was released to a few external users in June 1989. In response to a critique of the first rule system ( A commentary on the POSTGRES rules system ), the rule system was redesigned ( On Rules, Procedures, Caching and Views in Database Systems ), and Version 2 was released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers, an improved query executor, and a rewritten rule system. For the most part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These include: a financial data analysis system, a jet engine performance monitoring package, an asteroid tracking database, a medical information database, and several geographic information systems. POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Information Technologies (later merged into Informix, which is now owned by IBM) picked up the code and commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing project.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that maintenance of the prototype code and support was taking up large amounts of time that should have been devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project officially ended with Version 4.2.

Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new name, Postgres95 was subsequently released to the web to find its own way in the world as an open-source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major enhancements:

PostgreSQL

By 1996, it became clear that the name "Postgres95" would not stand the test of time. We chose a new name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as "Postgres" (now rarely in all capital letters) because of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities, although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in release notes.

NTT DATA Rita-DB Project

Note: The following description applies only to Postgres-XC

In 2001, NTT DATA began a research project called Rita-DB which aimed to provide both read and write scalability of PostgreSQL. The architecture was very similar to current Postgres-XC. After three years effort, it was successful to provide globally transparent transaction capability among database servers involved.

However, Rita-DB was not successful to show that the architecture scales. It scaled to some extent but the result was not attractive to prospect users.

The result was presented in PostgreSQL anniversary summit in Toronto.

Postgres-XC from PostgreSQL

Note: The following description applies only to Postgres-XC

In 2010, Rita-DB was carried over to NTT's Open Source Software Center as Postgres-XC project. EnterpriseDB Inc., joined the project. After six month effort, they were successful to show that multiple PostgreSQL can be integrated into database cluster and they can provide transparent global transaction management feature. Benchmark showed both read and write scalability.

These outcome was presented in PGCon2010, CHAR(10) and JPUG conference.

After then, the development team decided to expand statement capability of Postgres-XC to full PostgreSQL as much as possible. They're working hard to this goal.