Postgres-XC 0.9.7 Documentation | ||||
---|---|---|---|---|
Prev | Fast Backward | Chapter 28. Reliability and the Write-Ahead Log | Fast Forward | Next |
Note: The following description applies both to Postgres-XC and PostgreSQL if not described explicitly.
Write-Ahead Logging (WAL) is a standard method for ensuring data integrity. A detailed description can be found in most (if not all) books about transaction processing. Briefly, WAL's central concept is that changes to data files (where tables and indexes reside) must be written only after those changes have been logged, that is, after log records describing the changes have been flushed to permanent storage. If we follow this procedure, we do not need to flush data pages to disk on every transaction commit, because we know that in the event of a crash we will be able to recover the database using the log: any changes that have not been applied to the data pages can be redone from the log records. (This is roll-forward recovery, also known as REDO.)
Tip: Because WAL restores database file contents after a crash, journaled file systems are not necessary for reliable storage of the data files or WAL files. In fact, journaling overhead can reduce performance, especially if journaling causes file system data to be flushed to disk. Fortunately, data flushing during journaling can often be disabled with a file system mount option, e.g. data=writeback on a Linux ext3 file system. Journaled file systems do improve boot speed after a crash.
Using WAL results in a
significantly reduced number of disk writes, because only the log
file needs to be flushed to disk to guarantee that a transaction is
committed, rather than every data file changed by the transaction.
The log file is written sequentially,
and so the cost of syncing the log is much less than the cost of
flushing the data pages. This is especially true for servers
handling many small transactions touching different parts of the data
store. Furthermore, when the server is processing many small concurrent
transactions, one fsync
of the log file may
suffice to commit many transactions.
WAL also makes it possible to support on-line backup and point-in-time recovery, as described in Section 23.3. By archiving the WAL data we can support reverting to any time instant covered by the available WAL data: we simply install a prior physical backup of the database, and replay the WAL log just as far as the desired time. What's more, the physical backup doesn't have to be an instantaneous snapshot of the database state — if it is made over some period of time, then replaying the WAL log for that period will fix any internal inconsistencies.