PostgreSQL can be extended to run user-supplied code in separate processes. Such processes are started, stopped and monitored by postgres, which permits them to have a lifetime closely linked to the server's status. These processes have the option to attach to PostgreSQL's shared memory area and to connect to databases internally; they can also run multiple transactions serially, just like a regular client-connected server process. Also, by linking to libpq they can connect to the server and behave like a regular client application.
Warning |
There are considerable robustness and security risks in using background worker processes because, being written in the C language, they have unrestricted access to data. Administrators wishing to enable modules that include background worker process should exercise extreme caution. Only carefully audited modules should be permitted to run background worker processes. |
Only modules listed in shared_preload_libraries can run
background workers. A module wishing to run a background worker needs
to register it by calling
RegisterBackgroundWorker(BackgroundWorker *worker)
from its _PG_init()
.
The structure BackgroundWorker is defined thus:
typedef void (*bgworker_main_type)(void *main_arg); typedef struct BackgroundWorker { char bgw_name[BGW_MAXLEN]; int bgw_flags; BgWorkerStartTime bgw_start_time; int bgw_restart_time; /* in seconds, or BGW_NEVER_RESTART */ bgworker_main_type bgw_main; Datum bgw_main_arg; } BackgroundWorker;
bgw_name is a string to be used in log messages, process listings and similar contexts.
bgw_flags is a bitwise-or'd bitmask indicating the capabilities that the module wants. Possible values are BGWORKER_SHMEM_ACCESS (requesting shared memory access) and BGWORKER_BACKEND_DATABASE_CONNECTION (requesting the ability to establish a database connection, through which it can later run transactions and queries). A background worker using BGWORKER_BACKEND_DATABASE_CONNECTION to connect to a database must also attach shared memory using BGWORKER_SHMEM_ACCESS, or worker start-up will fail.
bgw_start_time is the server state during which postgres should start the process; it can be one of BgWorkerStart_PostmasterStart (start as soon as postgres itself has finished its own initialization; processes requesting this are not eligible for database connections), BgWorkerStart_ConsistentState (start as soon as a consistent state has been reached in a hot standby, allowing processes to connect to databases and run read-only queries), and BgWorkerStart_RecoveryFinished (start as soon as the system has entered normal read-write state). Note the last two values are equivalent in a server that's not a hot standby. Note that this setting only indicates when the processes are to be started; they do not stop when a different state is reached.
bgw_restart_time is the interval, in seconds, that postgres should wait before restarting the process, in case it crashes. It can be any positive value, or BGW_NEVER_RESTART, indicating not to restart the process in case of a crash.
bgw_main is a pointer to the function to run when the process is started. This function must take a single argument of type void * and return void. bgw_main_arg will be passed to it as its only argument. Note that the global variable MyBgworkerEntry points to a copy of the BackgroundWorker structure passed at registration time.
Once running, the process can connect to a database by calling
BackgroundWorkerInitializeConnection(char *dbname, char *username)
.
This allows the process to run transactions and queries using the
SPI interface. If dbname is NULL,
the session is not connected to any particular database, but shared catalogs
can be accessed. If username is NULL, the process will run as
the superuser created during initdb.
BackgroundWorkerInitializeConnection can only be called once per background
process, it is not possible to switch databases.
Signals are initially blocked when control reaches the
bgw_main function, and must be unblocked by it; this is to
allow the process to customize its signal handlers, if necessary.
Signals can be unblocked in the new process by calling
BackgroundWorkerUnblockSignals
and blocked by calling
BackgroundWorkerBlockSignals
.
Background workers are expected to be continuously running; if they exit
cleanly, postgres will restart them immediately. Consider doing
interruptible sleep when they have nothing to do; this can be achieved by
calling WaitLatch()
. Make sure the
WL_POSTMASTER_DEATH flag is set when calling that function, and
verify the return code for a prompt exit in the emergency case that
postgres itself has terminated.
The worker_spi contrib module contains a working example, which demonstrates some useful techniques.